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Fatigue limits in noncyclic loading of ceramics 
with crack-resistance curves 
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Fatigue properties in the noncyclic loading of ceramics with R-curves are studied. Particular 
attention is directed to the potential role of R-curves in the enhancement of fatigue limits. A 
numerical algorithm for solving the appropriate differential equations of rate-dependent failure 
is developed. Our formalism specifically incorporates a crack-size dependent toughness function, 
based on grain-localized interfacial bridging, and a hyperbolic-sine velocity function, represen- 
tative of a fundamental activation process. In a case study, dynamic fatigue (constant stressing 
rate) and static fatigue (constant applied stress) data for a coarse-grained alumina with a pro- 
nounced R-curve are analysed. With foreknowledge of the toughness parameters, the intrinsic 
crack-tip velocity function is deconvoluted. This intrinsic function is distinguished from the 
usual "apparent", or "shielded", (and demonstrably nonunique) function determined directly 
from the external load. It is confirmed that the R-curve, by virtue of its stabilizing influence on 
the crack growth, significantly enhances the fatigue limit, and confers the quality of "f law 
tolerance" on fatigue lifetimes. 

1. I n t r o d u c t i o n  
Brittle solids are susceptible to delayed failure induced 
by "slow" growth of flaws to critical dimensions [1]. 
In the ceramics community, such delayed failure is 
referred to as "fatigue", even for noncyclic loading 
conditions, e.g. constant stress ("static" fatigue) or 
constant stressing rate ("dynamic" fatigue). Experi- 
mental data are usually represented as linear plots 
on appropriate (logarithmic-coordinate) fatigue dia- 
grams (applied stress against failure time, or failure 
stress against stressing rate), the slopes of which deter- 
mine a fatigue "susceptibility". Embodied in most 
analytical treatments of these plots are certain ideal- 
izations concerning the fracture mechanics, e.g. that 
the strength-controlling flaws are free of any residual 
driving forces and that the material has a single- 
valued toughness, such that the (inverse) susceptibility 
is directly identifiable with the exponent in a power- 
law crack velocity relation [2, 3]. Characteristic features 
of such treatments are: (i) an implied uniqueness of  the 
crack velocity-mechanical energy release rate (v-G) 
function for a given material-environment system; (ii) 
a critical dependence of  the ensuing lifetime charac- 
teristics on the initial flaw size. 

An important shortcoming of  the conventional log- 
linear analysis of time-to-failure behaviour in ceramics 
is the lack of provision for a fatigue limit. The existence 
of a bounding applied stress, O%m say, below which a 
component effectively has infinite lifetime, is an attrac- 
tive prospect in engineering design. Efforts to detect 
such lower bounds as deviations from linear response 

in the long-lifetime domain of fatigue diagrams have 
been few, due partly to the notorious scatter in 
strength-related data and partly to self-imposed short- 
term restrictions on data accumulation, this despite a 
well established precedent for analogous fatigue limits 
in the metals literature [4]. A study by Cook [5] on 
sapphire, using indentation flaws to reduce the scatter 
and extend the range of constant stressing rate data, is 
one exception. That  author attributes the observation 
of an asymptotic lower limit in the sapphire strength 
to a threshold in the underlying crack velocity function, 
i.e. to the existence of  a zero velocity state at (positive) 
nonzero applied load, Cook used a power-law velocity 
function in stress intensity factor, K, with cutoff to 
describe this threshold; we shall assert that the velocity 
function is written more justifiably as a hyperbolic sine 
in G -  27, where 7 is a thermodynamic surface 
energy. Direct measurements of rate-dependent crack 
growth in large-scale crack specimens of other brittle 
materials [6, 7] suggest that velocity thresholds, and 
thence fatigue limits, might be more prevalent in 
ceramics thanpreviously  suspected. In any event, it 
seems apparent that anything we could do to the 
material system to augment this threshold would surely 
stand to improve lifetime characteristics. 

There is a way in which improvement of this kind 
might be achieved, and that is to make use of  the 
crack-stabilizing effect of R-curve (or T-curve) behav- 
iour, i.e. a systematically increasing crack resistance R 
(or, equivalently, toughness T), with extension [8]. 
R-curve behaviour arises because of the shielding of 
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the crack by some microstructure-associated energy- 
dissipative process in the region immediately surround- 
ing the tip. It is now appreciated that many nontrans- 
forming ceramics exhibit such behaviour [8-16]. It has 
been argued on qualitative grounds that the restrain- 
ing influence of shielding should extend to rate-depen- 
dent crack growth [17], and there is some experimental 
evidence in support of this contention in zirconia 
material systems [18]. However, the possibility of 
using shielding to improve lower-limit strength levels 
does not seem to have attracted much attention in the 
literature. 

In the present paper we explore this last possibility. 
As a case study, we examine a material with pro- 
nounced R-curve behaviour, a coarse-grained alumina 
of a kind that has been investigated extensively in 
inert-environment (equilibrium) indentation-strength 
studies [8, 11, 13, 15]. The R-curve behaviour in poly- 
crystalline alumina is due to persistent grain-localized 
bridging at the interface behind the (intergranularly) 
propagating crack tip. In developing a fatigue formal- 
ism we proceed in a manner similar to that described 
in earlier indentation-flaw fatigue studies [19-23] for 
materials with single-valued toughnesses, but with 
proper refinements. Now, we incorporate specific 
information on the R-curve (evaluated from control, 
inert-environment indentation-strength tests [8] on the 
same material) into a general hyperbolic sine v-G 
function to establish a starting differential equation. A 
numerical algorithm is thereby set up to obtain life- 
time solutions for prescribed time-dependent applied 
load states (constant stressing rate, constant stress). 
The algorithm is used to fit dynamic and static fatigue 
data on our alumina, and thence to determine unknown 
parameters in the v-G function. 

More general implications of the analysis are then 
discussed. 

(i) We confirm that the R-curve, because of its 
stabilizing influence on the crack growth, strongly 
enhances the fatigue limit. Indeed, we argue that a 
fatigue limit may even be apparent in materials that 
exhibit no natural threshold in the v-G relation. 

(ii) We stress that the calibrated crack velocity func- 
tion is the intrinsic v-G,  relation for the material- 
environment system, i.e. the fundamental relation that 
expressly determines the crack-tip motion. This rel- 
ation is to be distinguished from the "engineering" 
v-Ga relation that would normally be obtained by 
monitoring the external load on the system. It is sug- 
gested that the intrinsic velocity relation may not be 
readily obtained in traditional large-crack tests, 
because of a history-dependence of the shielding com- 
ponent in G. Consequently, contrary to conventional 
expectation, the apparent v-G, relation will generally 
not be unique. 

(iii) We show that the fatigue lifetimes are not 
strongly dependent on initial flaw size; the quality 
of flaw tolerance in the strength characteristics 
for materials with R-curves [24] extends to fatigue 
properties. 

Finally, the versatility of the procedure is indicated; 
once the velocity equation is calibrated, the algorithm 
may be used for a priori predictions of the fatigue 

response in other, potentially more complex (e.g. 
cyclic) loading modes. 

2. Frac ture  m e c h a n i c s  
In this section we outline the theoretical basis 
for determining failure lifetimes for ceramics with 
threshold crack velocity functions and with rising 
R-curves. We focus specifically on nontransforming 
materials whose R-curve is attributable to crack- 
interface bridging, although it is emphasized that the 
logical procedure for the analysis will be the same for 
other crack resistance processes. We start by writing 
expressions for the crack-size dependence of the mech- 
anical energy release rate, G(c), or the stress intensity 
factor, K(c), incorporating the microstructural fea- 
tures that account for the toughness variation. Then 
we combine these expressions with the crack velocity 
relation, v(G), to introduce a criterion for rate-depen- 
dent extension. Given the time dependence of the 
applied stress, oa(t), a differential equation for the 
crack growth evolution can be constructed. The aim of 
the exercise is to evaluate this differential equation to 
determine the failure time, i.e. the time to take the 
initial strength-controlling flaw to a critical dimension 
for unlimited unstable propagation. Our analysis will 
be directed to controlled indentation flaws, but we 
stress at the outset that the formulation in this section 
is applicable to all flaw types. 

2.1. Crack driving force and the R-curve 
Consider first the mechanical driving force acting on 
the crack tip. As we shall argue in the next subsection, 
it is useful to express this driving force ultimately as a 
mechanical energy release rate, G. For the special case 
of crack propagation in the absence of any environ- 
mental effects, the fundamental Griffith condition for 
crack extension is expressible in terms of the energy 
release rate, G,(c) at the crack tip 

G,  = 27o (equilibrium) (1) 

where 70 is the fracture surface energy in inert atmos- 
pheres. In specifying 70 it is important to identify the 
mode of fracture: for our case study in Section 3 below 
we shall be concerned primarily with a polycrystalline 
material that shows essentially intergranular fracture, 
so that 7o must ultimately be relatable to a grain- 
boundary energy. 

To make full use of the superposability of linear 
stress fields it is convenient to formulate the problem 
in terms of stress intensity factor notation, K. Accord- 
ingly, we seek an expression for K,(c), the net K-field 
experienced at the crack tip, and convert to G,(c) 
using the plane-strain transformation relation 

G, = K , /E '  (2) 

where E'  = El(1 - v2), with E = Young's modulus 
and v = Poisson's ratio [25]. The net stress intensity 
factor will generally be made up of three components 

K,(c) = Ka(c ) + Kr(c ) -1- K#(c). (3) 

K,(c) is the familiar contribution from the externally 
applied loading system. In most traditional treatments 
this is the only component that is considered. K,(c) is 
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Figure 1 Growth of penny-like crack in bridging 
field; (a) side view, (b) projection view. ([]) Out-of- 
plane bridging grains. 

the contribution from any residual local stress fields 
associated with the formation of the crack. This is 
certainly an important term for the indentation flaws 
to be considered later, and may also be a significant 
factor in many naturally occurring flaw types. K,(c) is 
the contribution from the microstructural elements 
that are responsible for the R-curve. It is usually (not 
necessarily always) negative (closure field). The second 
and third terms in Equation 3 together effectively shield 
the crack tip field from the remote loading: it is only 
when these two terms are zero that we may revert to 
the simplistic identification of Ka with K,  that is implicit 
in most fatigue analyses for ceramic materials. 

We need to specify the form of K~(c) for materials 
that exhibit R-curve behaviour by virtue of a crack- 
interface bridging mechanism. In the most recent 
analysis [8], the bridging restraint is modelled in terms 
of a "tail-dominated" stress-separation constitutive 
relation for interlocking grains on either side of 
the crack interface. The interlocking is assumed to 
be governed by internal matrix thermal expansion 
mismatch stresses, which "clamp" the bridging grains 
as the opposite crack walls separate. The bridges 
break by first debonding along the grain boundaries, 
and then sliding at these constrained boundaries until 
separation is complete. Coulomb friction at the grain- 
matrix interface during the latter pull-out stage 
accounts for the bulk of the energy dissipation 
responsible for the rising R-curve. 

Suppose that our bridged crack system has essen- 
tially penny-like geometry, Fig. 1, as is pertinent to 
many flaw types and especially to indentation flaws. 
The solutions for the microstructural stress intensity 
factor may be derived in the pull-out-dominated limit 
of a linearly diminishing constitutive relation between 
closure stress, p, and (half) crack-opening displace- 
ment, u [8] 

p(u) = pM(1 -- U/Um), (0 <-G U ~ Urn) (4) 

where PM is the maximum resistance stress (at u = 0) 
and Um is (half) the wall-wall displacement at grain- 
matrix disengagement (at p = 0). These last two par- 
ameters may be written more explicitly for rectangular, 
equiaxed microstructures as [8] 

PM = ( 4 ] ' l ~ r R U m l / d 2 ) ( 2 d 2 / [ 2 -  1) (5a) 

Um= sll/2 (5b) 

where l is the mean grain diameter, d the bridge spac- 
ing, / ,  the coefficient of sliding friction, rr R the mag- 
nitude of the internal stress, and e~ the bridge rupture 
strain. 

The solutions may be subdivided into three domains 
[8]: the precursor tensile zone, the bridging zone, and 
the saturation zone. 

2. 1.1. Precursor  tensi le zone ( c < d )  
Within this small-crack region no bridges are inter- 
sected, and the crack experiences only matrix tensile 
stresses + o-R. There is a net driving force 

K~(c) = ~aRe '/2 (6) 

where 6 is a geometry-dependent coefficient appro- 
priate to penny cracks. 

2. 1.2. B r i dg ing  zone (c >~ d, 0 <. u <. Urn) 
The crack intersects bridges, and thereby has a posi- 
tive component due to the persistent matrix tensile 
stresses and a countervailing component due to the 
integrated effect of the bridging tractions in Equation 
4. In the approximation of "small shielding" (appro- 
priate to ceramics with modest toughening [8]) we 
derive 

K # ( C )  = ~/O'RCI/2[I - -  ( l  - -  d2/c2) '/21 

- -  ( E ' p M / K , ) [ U z ( 1  - U z / 2 U m )  ] (7) 

where Uz is (half) the crack-opening displacement at 
the stationary edge of the closure zone, i.e. location Z 
at r = d in Fig. 2. The quantity Uz(C) is determined 
separately from the Sneddon approximation for the 
crack profile equation at tip field K,  

Uz(C ) = ( ~ K , / s  2 - -  d2 ) / c ]  I/2 (8) 

2. 1.3. Saturat ion zone (c > d, u > u m) 
Ultimately, the first-intersected bridge at Z is pulled 
out and the bridging zone translates along with the 
crack. In this large-bridging domain only the second 
closure term in Equation 7 is significant, and this 
reduces to 

K u ( c )  = - E ' P M U m / 2 K  , (9) 

We note that K~ depends on K,  in Equations 7 to 9, 
so that Equation 3 becomes an implicit function for 
the crack-tip stress intensity factor. 

2!z 
r -I 

Figure 2 Coordinate system for crack-interface bridging. C, crack 
tip; Z, edge of the bridging zone. 
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2.2. Crack extension condition and the 
velocity function 

Now consider the v-G relation that defines the funda- 
mental kinetic condition for crack growth. We 
reiterate that the proper mechanical energy release 
rate in this relation is that experienced at the crack tip, 
i.e. G,.  We alluded in Section 1 to the shortcomings of 
the commonly used power-law function. The sole 
justification for retention of the empirical power-law 
function in traditional reliability formalisms has been 
the closed-form integrability of the ensuing fatigue 
lifetime differential equation [1-3]. However, with the 
introduction of the complex R-curve phenomenology 
into the G,(c) and K,(c) relations (Section Z1), 
closed-form solutions are no longer feasible; there is 
thus nothing to be lost by introducing a physically 
based, if more complex, velocity function, in particular 
one that provides for a threshold. 

Accordingly, we resort to a hyperbolic sine function, 
based on the underlying notion of stress-enhanced 
thermal activation over atomically localized energy 
barriers [5, 25-27] 

v(G,)  = v o sinh [(G, - 2 7 1 ) / 2 F  ] (271 ~< G, ~< 270 ) 

(lOa) 

v(G, )  = 0 (271 > G,) (10b) 

v(G,)  = VT (27o < O,) (lOc) 

where 7~ is the fracture surface energy in the presence 
of the reactive environment (i.e. lowered from ?0), v0 
and F are intercept and slope (susceptibility) par- 
ameters, and VT is a terminal velocity (--~ 103 msec-~). 
Again, the value of 71 is that corresponding to inter- 
granular fracture. The velocity function v(G,)  is 
sketched in Fig. 3. Note the provision in Equation 10a 
for a threshold. The insistence that the velocity be zero 
at G,  < 27~ in Equation 10b is consistent with the 
practical experience that cracks generally do not heal 
in polycrystalline materials. At G, > 270 the crack is 
able to propagate even in the absence of a reactive 
environment (cf. Equation 1), and rapidly attains 
dynamic velocities. Within these two cut-off extremes 
the velocity closely approximates an exponential 
dependence on G,.  

I 
27o 

x / / /  

o o 
"~ I / Slope = 1/2F 
- + -~ rot2 - 

O 

/ /  2}, 1 

I 
Net Crack-Tip Force, G. 

Figure 3 Schematic v(G,) function in Equation 10, plotted logarith- 
mically on v axis and linearly on G, axis. 

2.3. Differential equation for "static" and 
"dynamic" fatigue of indentation flaws 

Finally, we develop the formalism for crack systems in 
time-dependent applied stress fields, an = an(t), as 
pertains to strength considerations. For uniform 
stresses we may immediately write 

Ka(C ) = @Oa C1/2 (1 1) 

for the applied stress intensity factor in Equation 3. 
The applied stress states an (t) of specific interest to us 
here are those of so-called "static fatigue" 

~, = const. (12a) 

and "dynamic fatigue" 

an = aa/t = const. (12b) 

Also of specific interest here are indentation flaws. 
This flaw type is distinguished by a residual contact 
field [28] 

Kr(C ) = ZP/c 3/2 (13) 

with P the contact load and Z an elastic-plastic coef- 
ficient [15, 28]. 

Writing v = dc/dt, Equation l0 may be combined 
with Equations 2 to 9 and 11 to 13 into a differential 
equation for c(t) at fixed load P and stress a n or stress 
rate 6a. This composite differential equation has to be 
solved for the time to grow the crack from an initial 
equilibrium state to final instability, i.e. the "time to 
failure". Usually (but not always, see Section 4), the 
initial crack size, q, is calculated from Equations 2 to 
9 by setting G,(q)  = 271 (zero velocity) at Ka = 0; 
likewise, the final crack size, % is determined as the 
configuration G , ( c r ) =  27o (dynamic velocity) at 
which the system achieves uninterrupted propagation 
(see Section 3). 

It is pointed out that Equations 11 to 13 are special 
cases, and that our formalism in Sections 2.1 and 2.2 
is readily extendable to any general loading configu- 
ration, Kn[a~(t)], and to any residual stress state for 
the strength-controlling flaw, Kr(c). 

2.4. Numerical algorithm for solution of 
fatigue differential equation 

We have indicated that the general differential equation 
for kinetic crack growth in materials with R-curves 
has no closed-form solution. It is necessary to resort to 
numerical analysis. Consequently, a suitably expanded 
version of an earlier computer algorithm [19, 20] for 
determining static and dynamic fatigue times is 
employed. The algorithm increments c and t in 
Equation l0 in a Runge-Kutta stepwise integration 
procedure, readjusting crn(t ) (where necessary, e.g. 
dynamic fatigue), hence G,(c, t) (after iterative sol- 
ution of implicit expression for K, ,  Equation 3, see 
Section 2.1), at each step. 

Special attention to the stepping procedure in this 
algorithm is in order, owing to the typically enormous 
range of crack velocities embraced in the evolution to 
failure; a fixed increment in time runs the very clear 
risk of stalling the evaluation in the regions of slow 
growth and, conversely, of blowing it up in the regions 
of fast growth. It is necessary to adopt a stepping 
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strategy that provides a reasonable compromise 
between accuracy and time of computation. Conse- 
quently, our algorithm incorporates computational 
elements that allow for automatic readjustment of the 
increments, according to the instantaneous velocity. 
One of  these elements involves an inversion of the 
underlying differential equation, dc /d t  = v(c,  t): at 
low velocities (i.e. relative to v0, see Fig. 2), the 
equation retains its normal form - time is incre- 
mented, and the corresponding crack step determined 
from dc = v(c,  t) dt; conversely, at high velocities, we 
rewrite the equation as d t /dc  = 1Iv(c, t) - now 
crack size is incremented, and the Runge-Kutta  routine 
suitably modified to determine the time step d t =  
dc/v(c ,  t). 

Another critical element in our algorithm is a provi- 
sion to allow for intermediate, "pop-in" instabilities in 
the crack evolution. Such pre-failure jump-arrest 
events are indeed characteristic of materials with 
R-curves [13, 14, 29]. Consequently, a routine for 
predetermining all the unstable crack sizes, by solving 
Equation 1 at d G . / d e  > 0 in conjunction with 
Equations 2 to 9, is used to ensure that the programme 
is not stopped before the final, true failure instability 
is attained. 

Once the R-curve and crack velocity parameters are 
specified, we may predetermine the fatigue charac- 
teristics for a given material-environment system: 
static fatigue curves directly as the times to failure tf at 
specified applied stresses a,; dynamic fatigue curves as 
the fatigue strengths ar = dratr at specifie'd stressing 
rates aa. 

3. Results  
3.1. Exper imenta l  p r o c e d u r e  
Let us now demonstrate the formalism by analysing 
indentation-strength data on a commercial polycrys- 
talline alumina ceramic, nominally pure (<  0.1% 
additive) with grain size l ~ - 2 3 # m  (Vistal grade 
A1203, Coors Ceramic Co., Golden, Colorado, USA). 
The material is ostensibly the same as used in preceding 
studies [8, 11, 13, 23], but was obtained from a new 
batch. The intergranular-fracture, crack-interface 
bridging mechanism considered in Section 2.1 has 
been identified in this material [13], and the associated 

R-curve characteristics documented [8]. Dynamic 
fatigue test results in water have also been reported 
[23]. However, to avoid possible discrepancies from 
batch-to-batch variations, we obtain an entirely fresh 
set of data here. 

Accordingly, specimens were tested in the form of  
discs, approximately 22 mm diameter and 2 mm thick. 
Controlled Vickers indentation flaws were introduced 
at the centres of the prospective tensile faces of each 
specimen. The indentations were immediately covered 
with silicon oil, for inert strength tests, or with water, 
for fatigue tests. A biaxial loading fixture, with a flat 
circular punch of  diameter 4 mm on three-point sup- 
port of diameter 19 mm, was used to break the speci- 
mens, and the surface tensile stress, a, ,  computed 
from thin plate formulae [11]. For  the determination 
of inert strengths (aa = am), the contact loads covered 
a broad range (P = 3 to 300 N), and the breaks made 
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at fast stressing rates (>104MPasec - l ) .  For  the 
fatigue tests, a single, intermediate load (P = 30 N) 
was used. Dynamic fatigue strengths (a~ = o- 0 were 
determined over several decades of constant stressing 
rates (~, = 10 3 to 10+4MPasec-~), using a piezo- 
electric load cell [23] to extend the tests as far as 
practicable into the short-duration region ( < 20 msec); 
static fatigue times to failure (tr) were determined at 
prescribed applied stresses (a~ = const.) (ramp time 
< 6 sec). 

In all tests the broken specimens were examined to 
verify the indentation site as the origin of failure. 
Exceptions were excluded from the data pool. 

3.2. Inert strength data and the R-curve 
parameters 

The inert strength data, am(P), are shown in Fig. 4. 
These strength data tend strongly away from the con- 
ventional P-1/~ dependence for materials with a single- 
valued toughness, toward a plateau at low P. The 
plateau is a measure of  the flaw tolerance associated 
with R-curve behaviour [8, 14, 15]. A bridging par- 
ameter adjustment routine, iterating on Equations 2 
to 9 [8], is used to obtain the best-fit solid curve in this 
diagram. Assuming E '  = 413GPa, ~ = 1.24 and 
Z = 0.018 for the alumina [8], we obtain our fit with 
the following parameter values: 70 = 5.6 J m -2 (grain 
boundary), el = 0.120,/~ = 1.80, aR = 155MPa and 
d = 35#m. This set of parameters determines the 
R-curve. (These parameters are similar to those in 
determined [8], except that 7o is about 15% lower, 
suggesting that our new batch of material may have 
slightly weaker grain boundaries.) 

It is instructive to insert Equations 3 to 9 into 
Equation 2, and thence to evaluate the critical function 
G.(c )  corresponding to the inert strength data point at 
P = 30 N, am = 220 MPa, in Fig. 4. This function is 
plotted as the upper curve in Fig. 5. We note the 
principal minimum at G,  = 270, representing the 
configuration at failure. 

3.3. Fatigue data and the crack velocity 
parameters 

The dynamic and static fatigue results for our alumina 
are plotted in Figs 6 and 7, respectively. There is a 
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Figure 4 Inert strength-Vickers indentation load for polycrystalline 
alumina. Data points means and standard deviations (minimum ten 
specimens per point) in strength values. ( - - - )  Best fit obtained by 
adjusting parameters in bridging model. 
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Figure 5 Plot of G,(c) for polycrystalline alumina, Vickers inden- 
tation flaw (P = 30 N) evaluated at constant a~ = cr~ = 220 MPa 
(inert strength) and a~ = cr~ m = 130MPa (fatigue limit). 

strong asymptotic tendency to a fatigue stress limit, 
alim, in the long-time regions of both these plots. This 
tendency is most apparent in Fig. 7, reflecting a bias in 
the static testing methodology toward longer test 
durations; indeed, the data in Fig. 7 seem to lie almost 
exclusively in the fatigue-limit domain. At short times 
the data must saturate at the inert strength level; only 
in the dynamic data of Fig. 6 is the test duration short 
enough to indicate that this upper limit is, in fact, 
being approached. 

The solid curves are best fits to the data, obtained 
using the R-curve parameters evaluated above (Section 
3.1) and adjusting the crack velocity parameters in 
Equation 10. The procedure adopted for determining 
the velocity parameters involves two steps. 

(i) The surface energy term, 7~, is evaluated from 
an estimate of the asymptotic fatigue limit, alum = 
130MPa, in Figs 6 and 7. First we determine the 
critical function G,(c) appropriate to alum, at inden- 
tation load P = 30 N, in exactly the same way as done 
previously for the inert strength am, i.e. upper curve in 
Fig. 5. The new function is plotted as the lower curve 
in the same figure. Because the fatigue limit represents 
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200 
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Figure 7 Static fatigue plot for polycrystalline alumina in water, for 
Vickers indentations at P = 30 N. Arrows at right designate inter- 
rupted tests, overlapping data for ten specimens. Arrows at left 
designate breakages during ramp loading to maximum applied 
stress, six specimens. Other data points are results of  individual 
tests, a m is inert strength level, o-it m is fatigue limit. ( ) Best fit 
obtained by adjusting crack velocity parameters. (-  - -) Equivalent 
fatigue response for material without velocity threshold. 

the applied stress level below which the crack at some 
point in its evolution ceases all growth, the principal 
minimum in this lower curve necessarily defines the 
threshold state G,(c) = 27= (i.e. v = 0 in Equation 
10); hence from Fig. 5 we obtain 27~ = 1.20Jm -2. 

(it) The parameters v0 and F are now adjusted to 
give the best fit to the fatigue data points. The computer 
does this by selecting the combination of parameters 
that minimizes the variance between computed and 
measured data points at the experimental values of 6-, 
(dynamic fatigue) and o-, (static fatigue). In making 
these adjustments, it is useful to recognize that v 0 
reflects more strongly in the intercepts, F likewise 
more strongly in the slopes, of the fatigue plots. This 
procedure yields v0 = 7.0/~msec -~, F = 0.325Jm -2. 

The intrinsic v-G, function corresponding to the 
above parameter calibration is plotted in accordance 
with Equation 10 for our polycrystalline alumina in 
water as the solid curve in Fig. 8. Also included in 

300 

200 

c 

lOO 

2""~ ~ I i ~ 3 i ~ .t rt117 ' I 1 " ~  . . . . . . .  I ' ' ' ' " 1  r l l l ' ~  ' 1 ' ' 1 ]~  ' ' '~ 

O m  

O . . . . .  J I , . . .~  , , . , . . .J  j i . , r . I  I , i l i a  , , , , l J  i , I l i a  , , , ,F la  , r i+ J i , , , . ~  i , I T ~  r J ' r l " ~  ' I pl , ,~ 

10 -6 1 0 3  100 103 106 

Stressing Rate, ~a (MPa sec -1) 

10 9 

Figure 6 Dynamic fatigue plot for polycrystalline alumina in 
water, for Vickers indentations at P = 30N. Data points means 
and standard deviations (minimum ten specimens per point) 
in strength values, a m is inert strength level, U[~m is fatigue limit. 
( - - )  Best fit obtained by adjusting crack velocity parameters. 
(- - -)  Equivalent fatigue response for material without crack velocity 
threshold (Section 4). 

'g 

g 

0 .$ 

o 

103 

100 

10-3 

10-(3 

F 
I 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ /  Sapphire 

/ 

I 
I 
I 
L 
i 

iI 

5 
I ! I 

0 10 15 20 25 

G. (J m -2) 

Figure 8 Plot of the intrinsic crack-tip velocity function, v - G , ,  for 
polycrystalline alumina ( ) in water, as determined from fits to 
fatigue data. Also included is corresponding function for single- 
crystal sapphire ( - - - ) ,  using data from [23]. 

4303 



Fig. 8, as the dashed curve, is the analogous function 
for single-crystal sapphire in water, obtained by simi- 
larly dec0nvoluting fatigue data from [23] (requiring 
K, = 0, but retaining the hyperbolic sine velocity 
function over the Cook cut-off power-law [5]). The 
curve for the polycrystalline material falls distinctly to 
the left of that for  the single crystal. This is in accord 
with the fact that the fracture in the former is inter- 
granular (cf. 7o value 5.6 J m - 2  for our alumina with 
l l . 0 J m  -2 for sapphire, as reflected in the upper 
bounds to the two curves in Fig. 8). 

4. D i s c u s s i o n  
We have developed a formalism for studying (non- 
cyclic) fatigue limits in ceramic materials with 
R-curves. Introducing a microstructural closure stress 
intensity factor based on crack-interface bridging, 
and a threshold crack velocity function based essen- 
tially on activation kinetics, we have described a 
numerical algorithm that solves the ensuing fracture- 
mechanics differential equations for time-dependent 
failure. As an illustrative case study, dynamic and 
static fatigue limits for an alumina-water system with 
controlled (indentation) flaws have been quantified, 
and the intrinsic v-G, curve thereby deconvoluted. 
Once the R-curve and velocity parameters have been 
calibrated from the fatigue data, the algorithm 
becomes a powerful tool for analysing and predicting 
various elements of the limiting failure conditions. We 
shall explore some of these elements in the discussion 
below. 

It might be contended that the present study does 
little more than reinforce an existing suspicion that 
fatigue limits are possible in ceramics: all that is 
necessary is a threshold in the crack velocity function. 
The novel aspect here is our focus on the role of the 
R-curve; in particular, on how the additional crack 
stability afforded by the microstructural crack resist- 
ance may enhance these fatigue limits. Indeed, it can 
be argued that a fatigue limit may be achieved in an 
R-curve material without any velocity threshold at all. 
To demonstrate, we use our algorithm to compute the 
hypothetical fatigue responses for our alumina using 
the deconvoluted v-G, function in Fig. 8, but with the 
threshold artificially reduced to 7~ = 0 (i.e. as repre- 
sented by the extrapolated, dashed line in Fig. 3, using 
a curve of the same F but with suitably adjusted 
intercept v0 = 1.0#msec ~ in Equation 10). The 
resulting modified fatigue relations are included as the 
dashed curves in Figs 6 and 7. We see that the prospec- 
tive fatigue limit o-li m is lowered, but not to zero. Phys- 
ically, the existence of this limit is possible because the 
bridging closure term, - K~, in Equation 3, can negate 
the applied loading term, + K~ (plus K~, where appli- 
cable), giving rise to a balance state G,  = 0 in 
Equation 2. In terms of the construction of Fig. 5, the 
requirement for attaining such a balance state is that 
the minimum in the G,(c) curve should intersect the 
c-axis at nonzero aa. 

However "good"  we might regard the data fits in 
Figs 6 and 7, we would not suggest that we have 
proved the validity of the fracture mechanics relations 
in Section 2. In particular, we certainly would not 
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assert that the results confirm the fundamental 
correctness of the hyperbolic form of the intrinsic 
v-G, function in Equation 10. Nevertheless, we may 
feel confident that the deconvoluted curves in Fig. 8 
do faithfully represent the more important quantitative 
features of this intrinsic function, including the surface 
energy levels that define the thresholds. 

In this context of velocity functions, we submit that 
caution needs to be exercised in the interpretation of 
results from conventional large-crack tests, because of 
the shielding effects associated with R-curve behaviour. 
In an actual experiment one monitors the applied 
mechanical energy release rate Go, not the energy rate 
G,  experienced at the crack tip. Thus the apparent 
velocity relation, v-G~, will generally differ from the 
intrinsic relation, v-G,, and, moreover, will be history 
dependent. An important factor is the starting 
location along the R-curve; larger starting cracks will 
experience greater shielding, resulting in displacements 
of the v-G~ curves to the right on a velocity diagram. 
Similar displacements may be anticipated at slower 
loading rates. As an illustration, we show in Fig. 9 
hypothetical v-G~ curves for our indentation-flaw 
alumina-water system, generated from our algorithm 
for three designated P-da combinations. We reiterate, 
these are the curves that would be obtained experi- 
mentally if one were to evaluate Ga = KZ/E ' =  
O2a~c/E' (Equations 2, 3 and 11, Kr = 0 = K,)  from 
direct monitoring of the applied load and the crack 
size. As foreshadowed, the displacements become 
more pronounced with increasing indentation load 
and decreasing stress rate. Such a history dependence 
could account for the reports of progressive run-to- 
run v-G data shifts in the literature [30-32]. 

Another distinguishing feature of R-curve behaviour 
is the "flaw tolerance" referred to in Sections 1 and 3.2 
[24]. Again, we use the algorithm to demonstrate the 
point, by computing hypothetical dynamic fatigue 
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strength, ~r, against initial flaw size, ci, at prescribed 
constant stressing rates for our alumina-water system. 
The results of such computations for natural flaws (i.e. 
Kr = 0 in Equation 3) are plotted in Fig. 10. The 
strength values remain relatively constant up to initial 
flaw sizes of several tens of micrometres. Such insen- 
sitivity is attributable to the stabilizing influence of the 
(negative) K,(c) function on the crack driving force, as 
reflected for instance in the strongly diminishing G,(c) 
function to the left of the minimum in Fig. 5. 

This stabilizing influence may be demonstrated 
more explicitly by plotting out the complete evol- 
utionary path to failure. It is a trivial matter to extract 
this path directly from the algorithm. Thus in Fig. 11 
we plot three aa(C) functions (solid curves) at constant 
d, for our dynamic fatigue, indentation-flaw (P = 30 N) 
alumina-water system (cf. Fig. 6). The final instability 
configurations, cr (arrowed), in these curves occur at 
relatively large crack sizes (cf. initial sizes ci, at 
aa = 0), the more so the slower the stressing rate; 
indeed, at the slowest rate represented the crack 
undergoes several hundred micrometres of precursor 
stable extension. For comparison, we include in Fig. 
11 corresponding bounding quasi-equilibrium func- 
tions, computed using G, = 270 (upper dashed curve) 
or G, = 27, (lower dashed curve) in place of the v-G, 
relations in Equation 10 as a condition for extension 
in the algorithm. We note the tendency for the fatigue 
curves at the extremes of the stressing-rate range to 
approach these quasi-equilibrium limits: at fast rates 
the failure stress approaches the inert strength, con- 
firming that the crack spends most of its pre-failure 
life close to G, = 270; conversely, at slow rates the 
failure stress approaches the fatigue limit, indicating a 
pre-failure life perpetually close to G, = 27~. 

In conclusion, we have described a procedure for 
analysing specific fatigue (constant stress and constant 
stressing rate) and material-environment (alumina- 
water) systems. There would appear to be no restriction 
on the general flexibility of the algorithm. In principle, 
any stressing state (e.g. complex, cyclic loading), 
velocity function (e.g. air or other reactive environ- 
ment), or even R-curve mechanism (e.g. transformation 

toughening), could be handled by suitable modifi- 
cations to individual elements in the formulation. 
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